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INTRODUCTION

Some designs for the elimination of two way heterogeniety have
been considered by many authors in the past like Srikhande [5]
and Youden [6]. Pearce [3] and Agarwal [1]. Youden has used the
symmetrically balanced incomplete block design and Srikhande has
generalised these to include the case of balanced incomplete block
designs having b=my where v, b, r, k and A are the parameters of
the design and has obtained balanced designs eliminating the
positional effects. Pearce [3] has given some two way elimination
augmented designs. = Agarwal has also constructed some dcsigns by
utilising a special class of BIB designs. Preece [4] has considered some
designs for number of non-interacting treatments when applied to the
same unit as a generalisation of orthogonal Latin square. -

In the present paper a row and column designs have been
obtained through the orthogonal partitioning of a latin square. The
concept of orthogonal partitioning of latin square was given by
Finney (2). He defined the orthogonal partitioning of a latin square in
more general form as the partitioning of s2 cells of a s X s Jatin square
into k sets of sn; i=1,...k) cells where mi-+ne ... +m=s in such a
way that the ith set has »; cells in each row n; cells in each column
and n; cells for each letter. Each such set is an orthogonal portion
of the latin square. If the orthogonal partitioning of the latin square
of size sX s is done in twogroups (s*—s, s) and if the (s2—s) group is
considered as a row and column design with s treatments and each
replicated (s—1) times then this provides a row and cdlumn design of
the T : T T type as classified by Pearce (1960). If in the s cells which
were not considered earlier were substituted by a treatment other
then the one included in the design then the designs so formed will
be of the type O : T T as classified by Pearce [3]. The method of
analysis for these two class of designs has been given in the present

. paper. 4 .
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Method of Analysis

Consider a two way design with # rows and «’ columns. Let
there be » treatments, the ith treatment being replicated r; times, Iy
denotes the number of times the ith treatment occurs in the jth
row, mij’ the number of times it occurs in the j’'th columns, njj’ is
1 or 0 according as the experiment utilises the {(jj’) cell or not.
Ac, d will devote a matrix of ¢ rows and 4 columns.

Let Ly, u=(l;),
- Moy’ =(myy")
and

Nu, u'=(ny"),

i=1,2...0
=,2 .. u
J=1,2..u

If y,/(9 is the yield of the ith treatment in thejth row and j'th
column, the mathematical model assumed will be

J’ﬁ'(i)=l’~+“ifl“ﬁj"i"frf‘eja' (L)

where-p. is the general mean effect, «; and B, are effects of the jth row
and j'th column. = is the effect of the ith treatment and ey’ are
the independently and normally distributed with mean zero and
variance o2 Let T, R and C denote respectively the column vector
of the totals of the yields of treatments, rows and column. Defining

njp= E '
jl
n.4'= E My ; \
J
?
He E E Mjs
i 7

and dropping the subscripts of N, M and L we have

X =C \N’ diag (1— R L) R ..(1.2)
n “ng. T omg )
1 1 1

Xgl—'R Ndlag (—1 n—z‘ n-u' ) C . o (1.3)
1o 1

Yu=T—M diag ( T T ,)C (1.4
. .2 -
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. 1 1 1

YZQ—T—Q diag ( o Y )R : ...(L.5)
X19=—M'+ N diag (—L, 1 1 )L’ (1.6)

X M’ + N o me m) L (L

o riNde (L . 1 |
Xop=—L+ N diag ( n ) M (1.7
, .

Ay, =diag (n.1, n,5 ... n.,)— N diag (T ni) N ...(1.3)
~ : ~ 1. u /] ~

422=diag (n1., ng., ... nu.)—-]j diag (nLl 1 . ) ]ll’ ...(1.9)

n.y
By=diag (11, r2 ... ,)—M diag (nil n.l,,' )~ ..(1.10)
Bao=diag (r1, ro ... ro)—L diag (% - )z aan
_ Cu=Bp—X,, 4} Xn | " ‘ ...(1.12)I
Cor=An— X1, BY, X, (1.13)
Cur=Aua—Xuu BY, X | 14
Q11=Y22+z}’1'2 4:1 X ..(1.15)
Qu=Xi+XuBY Yoo | .16)
Q33=z}’21+:¥22' 13:1 Y .- (1.17)
IQ11=9’11§ e(LI8)
Q11=§zzﬁ | . -(1.19)
Q33=Css3 o : _.a.(1.20)

- where * over a matrix denotes conditional inverse and cap over

letter its estimate. The above results are taken from Agrawal [1].
In any latin square of size sX s if we do the orthogonal partitioning
in such a way that we remove one cell from each row, each column
and also of each letter then the analysis of such type of designs will
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be done by the method described by Hira Lal Agrawal (1966).

Treatment estimate is given by (1.18)

: : ~
l.e-, ! Q11=C11 T

Treatment sum of squares (adjusted) is obtained from Q1, Cfl O

where C;l is the conditional inverse of Cu1 . @1, -are the adjusted

treatment totals ard are given by (1.15) i.e.,
On=Yaut+X|, 47, X1

B2 for such designs will become.

Bas—diag (r, 12 ... ro)—L diag (

’

=(s—l? !—ﬁ
since
Fi=re=.=py=s5—1
and
| IR WS S W
n. na. oy s—1
== DI~ 2 (I+(~2) J)
- (15 1)
Also

An=diag (n.1, ... —n.,,’)—]ll' diag

=e-DI -1 (462 D)

(=

§—1

1 L) L
n. " ny.

..(.21)

(1.22)
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Since I— % J is an idempotent matrix

2 |
(:-Ls)-1-Ls
~ s ~ - S ~

{ & Z are square matfices of order s X s having théir usual meanings.
# __s—1 f— 2 .
e G ) .(1.23)
Now Xi2 from (1.6) is given by

Xi2= —M'+ N’ diag (—% i) r

Ry J -~
. ]"vr;Lr
=—M + -S—.-l
L [ 1) J—s M (1.24)
X =(X)
— —T (=1 J—s M) ..(1.25)

~ substituting A¥; from (1,23), X2 from (1.24), Bz, from (1.21) and

X;, from (1.25)in

Cui=Bpo—X;, A}, Xio
we get

Cn=-=2 (1 i—{)

—s_( (s—1) J— )( )(1 ) \(s—l) J—sM’)

on simplification we get

Cum 252 15 ) .20
. x« _ s—2 f 1 .
o ¢ =6 (s_3)(g— 7 ) | (1.27)
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Hznce treatmeat ss (adjusted)

=0u’' Cj, Ou

. s—2 1 ‘
=Qu mr(! "5 ) Qi
S (S 3) Qll Q11 ) Qll JQI]

N

_ s—2 2
=5G-3) 2 1y

i=1
The second part of this expression vanishes because J Q11=0
and Qi1 (i) can be obtained from
Qu=Yu+Xy, A} Xu
' Substituting ,
Yoo=T—LR/s—1

1
¥y =52y (- s

« _ s—1-f, _l__
=5y (- 7))

. NIR
n=C- s—1
We get
LR 1 g
Q11=T—‘m"+ 5G—2) ( (s'_l):,_sj‘!) )
‘ ’ / 1 N'R
\~I— s '-’) (C— 5—2 )
on simplification we get ‘
A _ N 1
Ou=T- ;[ L~ =5 M Jr-—Lmc

where ) )
T=Column vector of treatment totals

R=column vector of row totals
C=column vector of colum totals

s=size of latin squarg
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L=incidence matrix of treatment x rows

M=incidence matrix of treatment x coluonus

N=incidence matrix of rows x cols.

N’=Transpose of N

2 (s—2) "
s (s—3) ' - N

Vv (ti—tj)i;éj =

However, when we add an extra treatment in place of those
vocated cells than matrix L; (treatment X rows), M (treatment X cols)

and N (rows X cols) can be written as

L= ~L'

J’] (s+1)xs 3

M1=[4-l]
- J' ds+1)Xs

V=t ixs

where L and M are the incidence matrices of (treat X rows) and (treat-
ment X cols) when we do not add a supplement treatment.

Treatment ss (adjustéd) is given by

) ¥
O 911 Ou

where Cf‘l is the conditional inverse of the matrix Ci1

where Cui=Be—X{, A}, X1 L@

Here 11111=diag (n.1, ...—n.u')—]y’ diag ( 1 L)i\r

ni. Ny,
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. 1 .
Afy =7(!—?J) N (23)
| N di 1 1y,
Also X12=—{l.41 +N' diag (E ...... h:-) {‘1 N
o NL
RS
=[—M’ +s_sl J: Q:] : (2.4)
Baa—di VL dia .(L ERT
Bpo=diag (ry...—r» L, g I P~ 1

o (S;l)éf}“lf[f,][f'?f]

on simplification we ge.t

s {s—1)—1 _ s—2J s—1

s
Byo= ...(2.5)

S

on simplification we get Xj, A%, X1z

1
=L[{”T{ ,0] .(2.6)
s 0 0 |

- Cu=Bn—X), A;kl X1

S, Arl X1

Fa])—a
ty
| S

Also

Substituting Baa, X12 > A11 , X12 we get
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[ s(s—D—-2 I 1—s (:—2) 7 s—1 7
S5 ~ S - s ~
Cu= :
_S= . s—1
s -
It can be seen that
[ H—2s—-s2 J:' 0
G* — —o—2 s (s—l) ~
3 o117 0

Treatment ss (adjusted)

=0n Cfl Qu

. , S . 1425—s2 Q11 (i)
= [ Q11 (1): Qll s :| | 82— ) L{ s (s—l) J] Qll s"

14-2s— s2
T T2 2 Q11 @) — (s—1) (s2—s—2) o5 s

where Q11 (i) are the adjusted treatment total for the original treat-
ment and Q11 s’ is the adjusted treatment total for the supplemented
treatment. -

. — 2S 2
V(tv,—tj)— m (o2
(i)~

252—35—1

Vie—t)=173, (s = 2)

SUMMARY

Finney [2] gave the concept of orthogonal partitioning of latin
square and also gave the general definition for the partitioning into i
sets. Utilising this definition the s2 cells were partitioned into two

" groups as (s2—s, §). The analysis of s treatments each treatment

replicated (s—1) times in s rows and s columns has been discussed.
The design so formed will be of the type T: TT according to Pearce
[3]. When s cells are filled with treatment other than the earlier
treatments included into the design, the row and column design with
(s-+1) treatments becomes of the type O: TT. The analysis for thi
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design is also discussed. The expression for the variance of different
type of comparisons are also given.
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